
tcod-camera
Release 1.0.0

Kyle Benesch

Apr 01, 2024

CONTENTS:

1 About 1

2 API reference 5

3 Glossary 9

4 Indices and tables 11

Python Module Index 13

Index 15

i

ii

CHAPTER

ONE

ABOUT

This packages contains a set of tools for working with cameras which translate between world and screen coordinates.

It is intended to be used with Python-tcod and NumPy but requires neither.

This library works with the idea that you have a world array you want projected onto a␣
→˓screen array.
>>> import numpy as np
>>> import tcod.camera
>>> screen = np.arange(3 * 3, dtype=int).reshape(3, 3)
>>> world = np.arange(9 * 10, dtype=int).reshape(9, 10)
>>> screen
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> world
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89]])

This example uses `ij` coordinates, but `xy` coordinates are also an option.
The most basic example is to get the camera and use it to project the world and screen␣
→˓shapes.
>>> camera_ij = tcod.camera.get_camera(screen.shape, center=(2, 2)) # Get the camera␣
→˓position centered on (2, 2).
>>> camera_ij # The actual camera position is always which world position to project␣
→˓onto screen[0, 0].
(1, 1)
>>> screen_slice, world_slice = tcod.camera.get_slices(screen.shape, world.shape, camera_
→˓ij)
>>> screen_slice
(slice(0, 3, None), slice(0, 3, None))
>>> world_slice
(slice(1, 4, None), slice(1, 4, None))

(continues on next page)

1

https://pypi.org/project/tcod-camera/
https://github.com/HexDecimal/python-tcod-camera/blob/main/LICENSE
https://python-tcod-camera.readthedocs.io
https://codecov.io/gh/HexDecimal/python-tcod-camera
https://github.com/libtcod/python-tcod
https://numpy.org/

tcod-camera, Release 1.0.0

(continued from previous page)

>>> screen[screen_slice] = world[world_slice] # Project the values of screen onto the␣
→˓world.
>>> screen
array([[11, 12, 13],

[21, 22, 23],
[31, 32, 33]])

Out-of-bounds camera coordinates result in partial views.
Fully out-of-bounds cameras will result in zero element views.
>>> camera_ij = tcod.camera.get_camera(screen.shape, (4, 10)) # A camera position␣
→˓beyond the right side of the world.
>>> screen_slice, world_slice = tcod.camera.get_slices(screen.shape, world.shape, camera_
→˓ij)
>>> screen[screen_slice].shape # Because this is partially out-of-bounds not all of the␣
→˓screen is in view.
(3, 1)
>>> screen_slice
(slice(0, 3, None), slice(0, 1, None))
>>> world_slice
(slice(3, 6, None), slice(9, 10, None))
>>> screen[:] = -1 # The screen will be cleared with -1, this value now means out-of-
→˓bounds.
>>> screen[screen_slice] = world[world_slice] # The parts which do overlap will be␣
→˓projected.
>>> screen
array([[39, -1, -1],

[49, -1, -1],
[59, -1, -1]])

By adding the shape of the world to camera functions the camera can be clamped to the␣
→˓bounds of the world.
All screen indexes will be in-view as long as the screen is never larger than the␣
→˓world.
>>> camera_ij = tcod.camera.clamp_camera(screen.shape, world.shape, camera_ij)
>>> screen_slice, world_slice = tcod.camera.get_slices(screen.shape, world.shape, camera_
→˓ij)
>>> screen[screen_slice] = world[world_slice]
>>> screen # The camera was moved left to fit the screen to the world.
array([[37, 38, 39],

[47, 48, 49],
[57, 58, 59]])

If the world is divided into chunks then this library can be used to project each␣
→˓chunk onto a single screen.
You'll have to manage your own chunks. Possibly in a `dict[tuple[int, int],␣
→˓NDArray[Any]]`-like container.
>>> screen = np.zeros((10, 10), dtype=int)
>>> CHUNK_SIZE = (4, 4)
>>> for screen_slice, chunk_ij, chunk_slice in tcod.camera.get_chunked_slices(screen.
→˓shape, CHUNK_SIZE, camera=(0, 0)):
... screen[screen_slice] = chunk_ij[0] + chunk_ij[1] * 10
... print(f"{screen_slice=}, {chunk_ij=}, {chunk_slice=}")

(continues on next page)

2 Chapter 1. About

tcod-camera, Release 1.0.0

(continued from previous page)

screen_slice=(slice(0, 4, None), slice(0, 4, None)), chunk_ij=(0, 0), chunk_
→˓slice=(slice(0, 4, None), slice(0, 4, None))
screen_slice=(slice(0, 4, None), slice(4, 8, None)), chunk_ij=(0, 1), chunk_
→˓slice=(slice(0, 4, None), slice(0, 4, None))
screen_slice=(slice(0, 4, None), slice(8, 10, None)), chunk_ij=(0, 2), chunk_
→˓slice=(slice(0, 4, None), slice(0, 2, None))
screen_slice=(slice(4, 8, None), slice(0, 4, None)), chunk_ij=(1, 0), chunk_
→˓slice=(slice(0, 4, None), slice(0, 4, None))
screen_slice=(slice(4, 8, None), slice(4, 8, None)), chunk_ij=(1, 1), chunk_
→˓slice=(slice(0, 4, None), slice(0, 4, None))
screen_slice=(slice(4, 8, None), slice(8, 10, None)), chunk_ij=(1, 2), chunk_
→˓slice=(slice(0, 4, None), slice(0, 2, None))
screen_slice=(slice(8, 10, None), slice(0, 4, None)), chunk_ij=(2, 0), chunk_
→˓slice=(slice(0, 2, None), slice(0, 4, None))
screen_slice=(slice(8, 10, None), slice(4, 8, None)), chunk_ij=(2, 1), chunk_
→˓slice=(slice(0, 2, None), slice(0, 4, None))
screen_slice=(slice(8, 10, None), slice(8, 10, None)), chunk_ij=(2, 2), chunk_
→˓slice=(slice(0, 2, None), slice(0, 2, None))
>>> screen
array([[0, 0, 0, 0, 10, 10, 10, 10, 20, 20],

[0, 0, 0, 0, 10, 10, 10, 10, 20, 20],
[0, 0, 0, 0, 10, 10, 10, 10, 20, 20],
[0, 0, 0, 0, 10, 10, 10, 10, 20, 20],
[1, 1, 1, 1, 11, 11, 11, 11, 21, 21],
[1, 1, 1, 1, 11, 11, 11, 11, 21, 21],
[1, 1, 1, 1, 11, 11, 11, 11, 21, 21],
[1, 1, 1, 1, 11, 11, 11, 11, 21, 21],
[2, 2, 2, 2, 12, 12, 12, 12, 22, 22],
[2, 2, 2, 2, 12, 12, 12, 12, 22, 22]])

3

tcod-camera, Release 1.0.0

4 Chapter 1. About

CHAPTER

TWO

API REFERENCE

Camera helper tools for 2D tile-based projects.

tcod.camera.clamp_camera(screen, world, camera, justify=0.5)
Clamp the camera to the screen/world shapes. Preventing the camera from leaving the world boundary.

Parameters

• screen (tuple[int, ...]) – The screen shape.

• world (tuple[int, ...]) – The world shape.

• camera (tuple[int, ...]) – The current camera position.

• justify (float | tuple[float, ...]) – The justification to use when the world is
smaller than the screen. Defaults to 0.5 which will center the world when it is smaller than
the screen.

A value of zero will move a world smaller to the screen to inner corner. One would do the
same but to the opposite corner. You may also give a tuple with a value for each axis.

Returns

The new camera position clamped using the given shapes and justification rules.

Like the other functions, this camera position still assumes that the screen offset is (0, 0). This
means that no other code changes are necessary to add or remove this clamping effect. This also
means that changing justify also requires no external changes.

Return type
tuple[int, . . .]

tcod.camera.get_camera(screen, center, clamping=None)
Return the translation position for the camera from the given center position, screen size, and clamping rule.

Parameters

• screen (tuple[int, ...]) – The screen shape.

• center (tuple[int, ...]) – The world position which the camera will center on.

• clamping (tuple[tuple[int, ...], float | tuple[float, ...]] | None) –
The clamping rules, this is (world, justify) as if provided to clamp_camera. If clamp-
ing is None then this function only does the minimum of subtracting half the screen size to
get the camera position.

world is the world shape. justify can be (0.5, 0.5) to center the world when it’s smaller than
the camera, or (0, 0) to place the world towards zero. This would be the upper-left corner
with libtcod.

5

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

tcod-camera, Release 1.0.0

Returns
The clamped camera position.

Return type
tuple[int, . . .]

tcod.camera.get_chunked_slices(screen, chunk_shape, camera)
Iterate over map chunks covered by the screen.

Parameters

• screen (tuple[int, ...]) – The shape of the screen.

• chunk_shape (tuple[int, ...]) – The shape of individual chunks.

• camera (tuple[int, ...]) – The camera position.

Yields
(screen_slice, chunk_index, chunk_slice)

For the chunk at chunk_index it should be sliced with chunk_slice to match a screen sliced with
screen_slice.

Return type
Iterator[tuple[tuple[slice, . . .], tuple[int, . . .], tuple[slice, . . .]]]

Example:

CHUNK_SIZE: tuple[int, int]
screen: NDarray # Screen array.
chunks: dict[tuple[int, int], NDarray] # Mapping of chunked arrays.
camera: tuple[int, int]
for screen_slice, chunk_ij, chunk_slice in tcod.camera.get_chunked_slices(screen.
→˓shape, CHUNK_SIZE, camera):
if chunk_ij in chunks:

screen[screen_slice] = chunks[chunk_ij][chunk_slice]

>>> list(get_chunked_slices((10,10),(10,10),(0,0)))
[((slice(0, 10, None), slice(0, 10, None)), (0, 0), (slice(0, 10, None), slice(0,␣
→˓10, None)))]
>>> list(get_chunked_slices((10,10),(10,10),(-5,-5)))
[((slice(0, 5, None), slice(0, 5, None)), (-1, -1), (slice(5, 10, None), slice(5,␣
→˓10, None))), ((slice(0, 5, None), slice(5, 10, None)), (-1, 0), (slice(5, 10,␣
→˓None), slice(0, 5, None))), ((slice(5, 10, None), slice(0, 5, None)), (0, -1),␣
→˓(slice(0, 5, None), slice(5, 10, None))), ((slice(5, 10, None), slice(5, 10,␣
→˓None)), (0, 0), (slice(0, 5, None), slice(0, 5, None)))]

tcod.camera.get_slices(screen, world, camera)
Return (screen_slices, world_slices) for the given parameters.

This function takes any number of dimensions. The screen, world, and camera tuples must be the same length.

Parameters

• screen (tuple[int, ...]) – The screen shape.

• world (tuple[int, ...]) – The world shape.

• camera (tuple[int, ...]) – The camera position.

6 Chapter 2. API reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

tcod-camera, Release 1.0.0

Returns

The (screen_slice, world_slice) slices which can be used to index arrays of the given shapes.

Arrays indexed with these slices will always result in the same shape. The slices will be narrower
than the screen when the camera is partially out-of-bounds. The slices will be zero-width if the
camera is entirely out-of-bounds.

Return type
tuple[tuple[slice, . . .], tuple[slice, . . .]]

Example:

console: tcod.console.Console # Libtcod console, C order.
player_ij: tuple[int, int] # Player (y, x) position.
world: NDArray[Any] # Array created with `dtype=tcod.console.rgb_graphic`, C order.

console.clear() # Clear the console in case any areas are not covered by tcod.
→˓camera.get_slices.

Get the camera position centered on the player.
camera_ij = tcod.camera.get_camera(console.rgb.shape, player_ij)

Get the screen/world slices at the camera position.
screen_slice, world_slice = tcod.camera.get_slices(console.rgb, world, camera_ij)
console.rgb[screen_slice] = world[world_slice] # Render world graphics.

Render the player.
player_screen_y, player_screen_x = player_ij[0] - camera_ij[0], player_ij[1] -␣
→˓camera_ij[1]
console.print(player_screen_x, player_screen_y, "@")

tcod.camera.get_views(screen, world, camera)
Return (screen_view, world_view) for the given parameters.

This function takes any number of dimensions. The screen, world, and camera tuples must be the same length.

Parameters

• screen (_ScreenArray) – The NumPy array for the screen.

• world (_WorldArray) – The NumPy array for the world.

• camera (tuple[int, ...]) – The camera position.

Returns

The given arrays pre-sliced into (screen_view, world_view) views.

These will always be the same shape. They will be sliced into a zero-width views once the camera
is far enough out-of-bounds.

Convenient when you only have one screen and one world array to work with, otherwise you
should call get_slices instead.

Return type
tuple[_ScreenArray, _WorldArray]

7

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

tcod-camera, Release 1.0.0

8 Chapter 2. API reference

CHAPTER

THREE

GLOSSARY

Camera
This is a vector used to translate between screen-space and world-space coordinates.

The camera is positioned in world-space. Screen position (0, 0) is projected onto the world position at where
the camera is placed. This is the upper-left corner of the screen in libtcod or SDL.

Once you get the camera position via get_camera or by manually placing it you can convert between screen coor-
dinates and world coordinates by applying vector math. This position is also used by get_slices, get_views,
or get_chunked_slices.

Add the camera position to a screen position (such as a mouse tile position) to get the world position (such as
where in the world itself the mouse is hovering over.) Subtract the camera position from a world position (such
as a player object position) to get the screen position (such as where to draw the player on the screen.)

See the RogueBasin article on Scrolling maps for more details and a visual example.

Screen
Screen-space is the array which is projected into the world using a camera.

Normally this array is something like a tcod console, such as tcod.console.Console.rgb. However, this can
be any temporary array projected into the world.

World
This is the map data which is stored normally as one or more arrays.

9

http://roguebasin.com/index.php/Scrolling_map
https://python-tcod.readthedocs.io/en/latest/tcod/console.html#tcod.console.Console.rgb

tcod-camera, Release 1.0.0

10 Chapter 3. Glossary

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

11

tcod-camera, Release 1.0.0

12 Chapter 4. Indices and tables

PYTHON MODULE INDEX

t
tcod.camera, 5

13

tcod-camera, Release 1.0.0

14 Python Module Index

INDEX

C
Camera, 9
clamp_camera() (in module tcod.camera), 5

G
get_camera() (in module tcod.camera), 5
get_chunked_slices() (in module tcod.camera), 6
get_slices() (in module tcod.camera), 6
get_views() (in module tcod.camera), 7

M
module

tcod.camera, 5

S
Screen, 9

T
tcod.camera

module, 5

W
World, 9

15

	About
	API reference
	Glossary
	Indices and tables
	Python Module Index
	Index

